369 research outputs found

    Superconductivity in metal rich Li-Pd-B ternary Boride

    Full text link
    8K superconductivity was observed in the metal rich Li-Pd-B ternary system. Structural, microstructural, electrical and magnetic investigations for various compositions proved that Li2Pd3B compound, which has a cubic structure composed of distorted Pd6B octahedrons, is responsible for the superconductivity. This is the first observation of superconductivity in metal rich ternary borides containing alkaline metal and Pd as a late transition metal. The compound prepared by arc melting has high density, is stable in the air and has an upper critical field, Hc2(0), of 6T.Comment: 4 pages, 5 figur

    Niobium based intermetallics as a source of high-current/high-magnetic field superconductors

    Full text link
    The article is focused on low temperature intermetallic A15 superconducting wires development for Nuclear Magnetic Resonance, NMR, and Nuclear Magnetic Imaging, MRI, magnets and also on cryogen-free magnets. There are many other applications which would benefit from new development such as future Large Hadron Collider to be built from A15 intermetallic conductors. This paper highlights the current status of development of the niobium based intermetallics with special attention to Nb 3 (Al 1-x, Ge x). Discussion is focused on the materials science aspects of conductor manufacture, such as b-phase (A15) formation, with particular emphasis on the maximisation of the superconducting parameters, such as critical current density, Jc, critical temperature, Tc, and upper critical field, Hc2 . Many successful manufacturing techniques of the potential niobium-aluminide intermetallic superconducting conductors, such as solid-state processing, liquid-solid processing, rapid heating/cooling processes, are described, compared and assessed. Special emphasis has been laid on conditions under which the Jc (B) peak effect occurs in some of the Nb3(Al,Ge) wires. A novel electrodeoxidizing method developed in Cambridge whereby the alloys and intermetallics are produced cheaply making all superconducting electromagnetic devices, using low cost LTCs, more cost effective is presented.This new technique has potential to revolutionise the existing superconducting industry enabling reduction of cost orders of magnitude.Comment: Paper presented at EUCAS'01 conference, Copenhagen, 26-30 August 200

    Superconducting Properties of MgB2 Bulk Materials Prepared by High Pressure Sintering

    Full text link
    High-density bulk materials of a newly discovered 40K intermetallic MgB2 superconductor were prepared by high pressure sintering. Superconducting transition with the onset temperature of 39K was confirmed by both magnetic and resistive measurements. Magnetization versus field (M-H) curve shows the behavior of a typical Type II superconductor and the lower critical field Hc1(0) estimated from M-H curve is 0.032T. The bulk sample shows good connection between grains and critical current density Jc estimated from the magnetization hysteresis using sample size was 2x104A/cm2 at 20K and 1T. Upper critical field Hc2(0) determined by extrapolating the onset of resistive transition and assuming a dirty limit is 18T.Comment: 3Pages PD

    Magnetization measurements on Li2Pd3B superconductor

    Get PDF
    Magnetization in DC magnetic fields and at different temperatures have been measured on the Li2Pd3B compound. This material was recently found to show superconductivity at 7-8K. Critical fields Hc1(0) and Hc2(0) have been determined to be 135Oe and 4T, respectively. Critical current density, scaling of the pinning force within the Kramer model and the irreversibility field data are presented. Several superconductivity parameters were deduced: x(csi)=9.1 nm, l(lamda)=194nm and k=21. The material resembles other boride superconductors from the investigated points of view.Comment: 10 pages, 5 figure

    A Cross-Whiskers Junction as a Novel Fabrication Process for Intrinsic Josephson Junction

    Full text link
    A Bi2Sr2CaCu2O8+d cross-whiskers junction has been successfully discovered as a novel intrinsic Josephson junction without using any technique for micro-fabrication. Two Bi2Sr2CaCu2O8+d whisker crystals were placed crosswise on a MgO substrate and heated at 850C for 30 min. They were electrically connected at their c-planes. The measurement terminals were made at the four ends of the whiskers. The I-V characteristics of the cross-whiskers junction at 5K were found to show a clear multiple-branch structure with a spacing of approximately 15 mV that is a feature of the intrinsic Josephson junction. The critical current density Jc was estimated to be 1170 A/cm2. The branch-structure was strongly suppressed by the magnetic field above 1kOe.Comment: 4 pages, PDF fil

    One-neutron knockout reaction of 17C on a hydrogen target at 70 MeV/nucleon

    Get PDF
    First experimental evidence of the population of the first 2- state in 16C above the neutron threshold is obtained by neutron knockout from 17C on a hydrogen target. The invariant mass method combined with in-beam gamma-ray detection is used to locate the state at 5.45(1) MeV. Comparison of its populating cross section and parallel momentum distribution with a Glauber model calculation utilizing the shell-model spectroscopic factor confirms the core-neutron removal nature of this state. Additionally, a previously known unbound state at 6.11 MeV and a new state at 6.28(2) MeV are observed. The position of the first 2- state, which belongs to a member of the lowest-lying p-sd cross shell transition, is reasonably well described by the shell-model calculation using the WBT interaction.Comment: 15 pages, 3 figure

    Search for low lying dipole strength in the neutron rich nucleus 26^{26}Ne

    Full text link
    Coulomb excitation of the exotic neutron-rich nucleus 26^{26}Ne on a nat^{nat}Pb target was measured at 58 A.MeV in order to search for low-lying E1 strength above the neutron emission threshold. Data were also taken on an nat^{nat}Al target to estimate the nuclear contribution. The radioactive beam was produced by fragmentation of a 95 A.MeV 40^{40}Ar beam delivered by the RIKEN Research Facility. The set-up included a NaI gamma-ray array, a charged fragment hodoscope and a neutron wall. Using the invariant mass method in the 25^{25}Ne+n channel, we observe a sizable amount of E1 strength between 6 and 10 MeV. The reconstructed 26^{26}Ne angular distribution confirms its E1 nature. A reduced dipole transition probability of B(E1)=0.49±\pm0.16 e2fm2e^2fm^2 is deduced. For the first time, the decay pattern of low-lying strength in a neutron-rich nucleus is obtained. The results are discussed in terms of a pygmy resonance centered around 9 MeV

    Low-Energy Charge-Density Excitations in MgB2_{2}: Striking Interplay between Single-Particle and Collective Behavior for Large Momenta

    Full text link
    A sharp feature in the charge-density excitation spectra of single-crystal MgB2_{2}, displaying a remarkable cosine-like, periodic energy dispersion with momentum transfer (qq) along the cc^{*}-axis, has been observed for the first time by high-resolution non-resonant inelastic x-ray scattering (NIXS). Time-dependent density-functional theory calculations show that the physics underlying the NIXS data is strong coupling between single-particle and collective degrees of freedom, mediated by large crystal local-field effects. As a result, the small-qq collective mode residing in the single-particle excitation gap of the B π\pi bands reappears periodically in higher Brillouin zones. The NIXS data thus embody a novel signature of the layered electronic structure of MgB2_{2}.Comment: 5 pages, 4 figures, submitted to PR
    corecore